Sensors and Mobile Devices

Kevin A. Shaw, Ph.D.
Chief Technology Officer
Sensor Platforms, Inc.

Deriving the Where and Why of Motion.
Sensors

- **Sensors: Connecting Users and Devices**
 - The way for a machine to understand the user
Sensors

• Connecting with ‘Hidden Interfaces’
 – Keyless car unlocking with proximity
 • Walk to the car and it unlocks
 – Spinning around with AR
 • To see around you
 – Siri and asking a question
 • Lift phone to start Siri
 – Walk to a thermostat
 • It detects your arrival
Sensors

- Connecting
 - Phone connects to Wifi at home
 - Checkins at your favorite café
 - Automatic based on location
 - Turn off phone calls in car
 - Set to “driving” mode
 - Location based clothing ad’s
 - Get coupon for jeans when shopping for jeans.
Sensor solutions

- Require Sensors, Software and Systems
 - Sensors detect the world
 - Software interprets and understands
 - Systems provide the user experience
Sensor Software

- Consumer sensors
 - Need corrections for drift

- Software corrections
 - Makes up for deviations in sensors
 - “Save a dime and fix it in software”

- Separates the wheat from the chaff
 - Rejecting spurious touches of palm or cheek
 - Correcting for sensor drift
 - Rejecting corner cases: bad GPS in cities
 - Ignoring bad magnetic environments: elevator
Mobile phone sensors

How many sensors in a SmartPhone?

Source: Internet
Mobile phone sensors

- Accelerometer
- Gyroscope
- Magnetometer
- Barometer
- Proximity
- Light sensor
- Touch screen
- GPS
- WiFi
- Bluetooth
- GSM/CDMA Cell
- NFC: Near Field
- Camera (front)
- Camera (back)

14 sensors!
Capacitive Touch

- Capacitive Touch Sensors
 - The most obvious sensor, but so invisible.
 - Touch is so fundamental

- Innovations
 - Proximity detection: ~30cm
 - Machines can know when you are near.
 - Phones can sleep when away and wakeup before you can touch.
Proximity: Touchless Touch

- Advanced touchless interfaces
 - Sony Xperia Sola
 - Tracks 3D motion of finger above the screen
 - Up to 22mm
 - Eyesight™ Gesture Tech
 - Uses camera & machine vision algo
 - Detects swipes, taps, and waves without touching.
Proximity: Touchless Touch

• Optical Proximity Sensor
 – Measures distance to nearest surface based on amplitude of received signal

• Multiple Sensors
 – detect motion in two axes
Accelerometer

- Measures gravity in the world frame and dynamic acceleration in the body frame.
- If the device is still, however, we only see gravity.
- Then we can easily measure tilt.

\[
\begin{align*}
\bar{a}_{\text{body}} &= \frac{d^2}{dt^2} \bar{p}_{\text{body}} - \mathbf{R}_{\text{body}}^{\text{world}} \; \mathbf{g}_{\text{world}} \\
&\cong -\mathbf{R}_{\text{body}}^{\text{world}} \; \mathbf{g}_{\text{world}} \; \text{(when still)}
\end{align*}
\]
Accelerometers

• Its really three sensors in one
 – Vibration sensor
 – Tilt sensor
 – Position sensor (coarse)

• Used to measure:
 – Portrait-landscape Orientation
 – Orient maps with compass
 – Pedometry (step counting)
 – Tilt and turn games
Gyroscope

- Gyros don’t measure angle!
 - They measure the rate of change
 - Body rates: rotation about each axis
- Rates are relative to a starting point, so one must know the start to know the end.
 - Depend on Accel/Mag for start
- Integrate to get angle
Magnetometer

- Used to measure rotation
- Absolute orientation reference for gyroscope
- Vastly differing technologies:
 - Hall effect, AMR, Magneto-Impedence, Spin Tunnel Junction

Note: An earth field is about 350mG.
Note: 10mGauss = 1uTesla.
Barometer

- Measures altitude relative to reference point

![Barometer Chart](Sensorsmag.com)

```
Floor detection in ST building in Castelletto, Italy
```

![Baseline Chart](Melexis.com)
Cameras

- Most smart phones have two cameras
 - Front & Rear
- Used for
 - Computer Vision
 - Attitude
 - Augmented Reality
 - Face detection for focus
 - Smile detection
Cameras

- **Augmented Reality**
 - It’s like a game portal into the real world
 - Data is overlaid on reality as seen through the camera
 - Can provide:
 - travel tips based on location
 - ads based on a page code

- **How?**
 - Need position and orientation
 - GPS for world position
 - XL/MG for heading/elevation
Microphone

- All phones have one microphone
- Many have three microphones
- Cancellation of background noise
- Beam steering for voice focusing
Virtual Sensors

- Fused combinations of sensors
 - Accel + Mag + Gyro + Baro
- Results
 - Attitude
 - Heading
 - Translation
- Context for the user
 - In hand. On Table. In Car.
 - In Elevator. On Train. Walking.
Crowd-sourced sensors

- **Waze** – Traffic crowd sourcing
 - Share velocity/position info between drivers for better routing

- **iShake / QuakeCatcher**
 - Crowd-sourced acceleration data to detect epicenter
 - Detects quakes in seconds

- **WiFi navigation maps**
 - Track and correlate GPS/WiFi
 - Build and heal WiFi fingerprint maps
Indoor Navigation

- Indoor is tricky
 - GPS is too weak; multi-path
- Alternatives
 - GSM: 50-100m
 - WiFi: 10-20m
 - BlueTooth: 10-20m
 - Inertial: <10m for <1min
- WiFi first proven in 2001
- Implementation is hard
 - Need location databases
 - Apple, MSFT, Google are building these
 - Many others are close
Indoor Navigation

• Indoor is tricky
 – GPS is too weak; multi-path

• Alternatives
 – GSM: 50-100m
 – WiFi: 10-20m
 – BlueTooth: 10-20m
 – Inertial: <10m for <1min

• WiFi first proven in 2001

• Implementation is hard
 – Need location databases
 – Apple, MSFT, Google are building these
 – Many others are close
Sensors are everywhere

- **Biometric Ear Buds (Apple patent)**
 - Measure: blood oxygen, body temp, heat flux, heart rate

- **Smart garments/shoes (Apple patent)**
 - Measure location and report to your phone over bluetooth

- **Thermostat**
 - Tracks your use and presence in the house; auto-adapts
Sensors are everywhere

- Accelerometer
- Gyroscope
- Magnetometer
- Barometer
- Proximity
- Light sensor
- Touch screen
- GPS
- WiFi
- Bluetooth
- GSM/CDMA Cell
- NFC: Near Field
- Camera (front)
- Camera (back)

14 sensors!

Source: Internet
Thank you

Kevin A. Shaw, Ph.D.
Chief Technology Officer
Sensor Platforms, Inc.

Deriving the Where and Why of Motion.
Pedestrian Dead Reckoning

- **PDR**: Pedestrian Dead Reckoning
 - Adds constraints that improve INS
 - Bounds the velocity estimate based on periodicity in walking motion
 - Sensors are typically placed on shoes to get zero velocity
 - Advanced algorithms can handle hand-held motion

Source: Thesis of Sidney P. Kwakkel

Source: TasteOfHome.com
Value chain

Accelerometer
Gyroscope
Magnetometer
Touch screen
GPS Navigation

Image: Invensense