Perceptive Edge

Terry O’Shea, Ph.D., O.E.
Senior Principal Engineer
Perceptive Edge

• Pushing intelligence to the edge of the cloud with sensing systems to move data quickly.
• Similar Architectural elements reused allows rapid innovation in design and development.
What problem are we trying to solve?

Too high! Takes an expert to install and then later reposition. It should be either less than 5%

Seriously! 75% of all calls are false positives.

Today
FMEA: Sensor Capabilities

Background: 108 Failure modes captured, Solutions for the top 50 issues fall in 19 common fixes.

Examples from “Better Sensor Design”:

- Tamper detection
- Enclosure Optimization
- Brown-out Detection
- Reliable Wireless
Data from Cambridge01 (Dining Room)

Motion when occupant is home

Bathroom visits
Sensing Suite

- **Agua Dulce**
 - Primer 3.0 + Arduino Shield
 - Interposer

- **Casa Alzate**
 - GPS Sensor

- **Punta Rocosa**
 - PIR + Shake Sensors

- **San Fellipe**
 - 3G cell phone

- **Pueblo Viejo**
 - LCD color

- **Santa Isabel/Camp Hill/High Hill**
 - Main Processor + WiFi + micro SD storage

- **Agua Mansa**
 - 3D Accelerometers + Gyros

- **Romellia**
 - Weather Board

- **Santa Catalina**
 - Energy saving Module

- **Southwest Bay**
 - DHS – Sensors (Dust, Air Quality, CO, CO2, Alcohol, Temperature)

- **Casa Baja**
 - TV

Key Features
- A very powerful and easy to use development environment
- FCC certified RF stack.
- C style development language
Home Energy Monitoring

IL Usage of the Providencia Suite

- Home energy team asked us to redesign their system to fit with Providencia Suite.
- Sensor detects appliance usage throughout the entire house with a two units.
- 100-500 household trial start in 2012 with Santa Catalina and Camp Hill
Normal Rig Flexure mode to be avoided

RF Stack 802.11
6 DOF System

3 packs of 1S6P batteries
O-ring
Offshore Weather

- Remote buoys contain sensors to monitor sea traffic, weather conditions and localized current changes.

- Data used to monitor environmental conditions and potential damage to the local ecosystem from shipping.

- Simple sensor system architecture allows the sensors to speak directly to the cloud, and be monitored remotely.
Made for security purposes, connected to a wired interface or wireless. If wired will use the battery for backup or if tampered with while in-situ. Shake sensors used for large gross movement and tampering.
First Responder Application - Fireball

Metal Fireball capsule for extreme conditions
Water Quality

18 vectors of water quality for wells and reservoir.
B.Tag Overview

BTAG is short for Brazil-Tag, and is a battery-assisted RFID Tag for use by the government of Brazil for Automatic Vehicle Identification (AVI). The tag supports a limited set of the EPC C1G2 RFID protocol, and the full SINIAV Protocol which is a superset to EPC C1G2.

A key asset to the BTAG platform is its high level of security and cryptographic protection. This asset will allow extension of the BTAG platform described in this document to other potential “High-Security RF Identification” scenarios.
Gas Station of the Future

• BTAG is in the car and the readers are mounted over head

• Tag is read and car identified, displays at the pump show the customer deals and specials in the station
Displays for GSOF
Readers and Positioned
Size of the Mass of Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Energy</td>
<td>100 MB/day</td>
</tr>
<tr>
<td>Structural Monitoring</td>
<td>311 MB/Day</td>
</tr>
<tr>
<td>Air Quality</td>
<td>112 MB/Day</td>
</tr>
<tr>
<td>Fireball</td>
<td>10 MB/1.5 min</td>
</tr>
<tr>
<td>Water Quality</td>
<td>130 MB/day</td>
</tr>
<tr>
<td>BTAG</td>
<td>8,600 MB/day</td>
</tr>
</tbody>
</table>

With the size of the data, and the movement the shortest path needs to be the least number of hops as possible.

Manageability will be the key in the future.
Conclusion

• Flexible modular platforms are easiest to get first to market advantage.
 – Regulatory and qualification drive the modularity
 – BOM/Cost reduction post market entry
• Total Cost of ownership should be the focus of the design.
 – Sense what you should not what you can.
 – Accuracy of the data ensures the system becomes trusted
• The volume of information moving from the sensors in the environment will be the next exponential growth in computing.
Legal Disclaimer

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

• Ivy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

• Intel, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

• *Other names and brands may be claimed as the property of others.

• Copyright ©2011 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should,” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Potential disruptions in the high technology supply chain resulting from the recent disaster in Japan could cause customer demand to be different from Intel's expectations. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. The majority of Intel's non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management’s plans with respect to Intel's investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended April 2, 2011.